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lon Selective Electrodes (ISE)

Direct potentiometry between a sensing electrode and a
reference electrode

Advantages:

= |nexpensive ($<1K)

= Available for nitrate and ammonium, ...
= Easyto use

= | arge measurement range

= Not influenced by color or turbidity

Available since the 1970s...

Disadvantages:

= | ower resolution, accuracy, and precision
®  Subject to ionic interferences

= High instrument drift

= Fouling problems
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Wet Chemical Sensors
Wet chemical colorimetric reaction, detection by photometry

Advantages: Available since the 1980s...
= High resolution, accuracy and precision

= Multiple constituents (nitrate, ammonium,
orthophosphate, silica)

= Relatively fast response time

= Potential for in situ calibrations

Disadvantages:

= Expensive ($15-20K)

= High power requirement
= High potential for fouling
= High maintenance costs
= Requires reagents

= Generates waste

2 USGS



Optical (UV) Sensors

Spectral absorption by a photometer

Advantages:

High resolution, accuracy and precision
Large measurement range
Chemical-free

Fast response time

Additional optical information in spectra
Anti-fouling measures

Disadvantages:
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Expensive ($15-25K)

Nitrate (and nitrite) only

High power requirement

High maintenance costs

Subject to a range of optical interferences

USGS

Available since early 2000s...
UV PHOTOMETER

Light Source
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UV Nitrate: From Lab to Field

Spectrophotometer: Measures the intensity of light after passing through a solution
Similar to Standard Method 4500-NO3- B (APHA, AWWA, WEF, 1995)

* Miniaturized components

* Rugged housings

« Efficient power handling

* No (or few) moving parts

* Internal dataloggers and
controllers

* Anti-fouling systems

* On-board data processing

optical windows

light source
(xenon or MIII detector and processor

deuterium)

reference beam

emitting optics collecting optics

% USGS Pellerin et al., 2013



Choosing a UV Nitrate Sensor

Differences affect instrument range, accuracy drift, tolerance for interferences, power
consumption, field maintenance, and COST

" History (wastewater vs. oceanography)

" Light source (deuterium vs. xenon
flash lamp)

" Measurement path (path length,
optical window materials)

" Spectrophotometer (wavelengths
measured)

" Processing algorithm (local, global)

" Reference detectors

"  Anti-fouling methods (wipers, air,
copper)

)

)

= USGS
Photos: http://www.mbari.org/twenty/isus.htm; www.hach-lange.co.uk



UV Nitrate Sensor Design

Keys for high gquality UV nitrate sensor measurements:

1) Choose appropriate path length 2) Measure necessary wavelengths
(0.5 =100 mm) (2 — 256 UV wavelengths)
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UV Nitrate Sensor Design

Keys for high quality UV nitrate sensor measurements:

3) Get the right algorithm

" Proprietary algorithms EXPLANATION

. Based on f|e|d and @ River calibration
|ab data [ Drinking-water calibration

= Calibration types
" Global
" Application-specific
(wastewater,
seawater, etc.)

® | ocal

" Compensation for
interferences

A\ Influent calibration
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Anti-Fouling

= A dirty optical sensor is virtually worthless

®  Wide range of anti-fouling approaches:
"  Wipers
®  Compressed air
"=  Copper/biocides

Y2012 10:34

Photos: Dick Cartwright, USGS, NY Water Science
Center; Joe Bell, USGS, MD Water Science Center




Wet Chemical Nutrient Sensors

®" Field deployable, wet chemical sensor using standard colorimetric methods
®  Available for orthophosphate, ammonium, nitrate, and silica
" USGS operates ~5 as part of testing / “proof-of-concept” for monitoring

Example Sensor PO, Specs

Detection Limit <0.0023 mg/L PO,-
P

Maximum 0-1.2 mg /L PO,-P
Concentration
Range

Maximum 30 minutes
Sampling Rate

Samples Per ~ 1000
Reagent




Total Nitrogen / Phosphorus

" Standard lab methods use chemicals (alkaline persulfate oxidation) or
high temperature (combustion)

"  Surrogate approaches will likely be needed

Mississippi River at St. Francisville (2004-2014) Potomac River at Chain Bridge (2004-2014)
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Surrogate Approaches

USGS station:

07144100 Little Arkansas River near Sedgwick, KS

" Current computed SO I——
concentrations and loads using Tine poriod: | ETOREIN]

i n-stream wate r-q u al |ty sSensor The data used to produce this plot are provisional and have not been reviewed or edited. They may be subject to change.
measurements as surrogates
for parameters that can’t be

measured directly

10

= Concentrations, loads, methods
used, and models as well as
published reports are available.

in milligrams per liter as phosphorns

Computed instantaneons total phosphoris concentration,
= =]
Computed discharge, in cubic feet per second

= Surrogate web pages:
http://nrtwg.usgs.gov
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Guidelines and Protocols

®  |nstrument characterization
" Guidelines for use in a range of environments %m
®  Continued interactions with manufacturers

Optical Techniques for the Determination of Nitrate in
Environmental Waters: Guidelines for Instrument Selection,
Operation, Deployment, Maintenance, Quality Assurance,
and Data Reporting

Chapter5 of
Saction D, Water Quality
Book 1, Collection of Water Data by Direct Measurement

U5 R

Technigues and Methods 1-D5

U.S. Department of the Interior
USS. Gealogical Survey

pubs.usgs.gov/tm/01/d5



- Water quallty
. Load assessment ,
: Source identification
" Event detection
" Aquatic processe

= Real-time decision : support

r" W
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Potomac River at Little Falls



Nitrate variability — San Joaquin River

Assessing diurnal nitrate variability in the San Joaquin River, Crows Landing, CA
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Pellerin et al., 2009



Nitrate variability — San Joaquin River

Assessing diurnal nitrate variability in the San Joaquin River, Crows Landing, CA
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USGS Continuous Nitrate Monitoring

= 06 sites nationwide (operated in 24 states)
= Extensive network in the Mississippi River Basin
= Most nitrate monitoring funded by cooperators (several sites threatened)

100
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Real-time map at http://waterwatch.usgs.gov/wgwatch/



Mississippi River Nitrate

3.00

= Strong correlation between in situ and discrete nitrate

R? = 0.9925

2.50
2.25
2.00

(depth- and width-integrated)
= Nitrate “flush” in spring 2013 (following 2012 drought)
= Dynamic nature, not well correlated with Q
= Estimated error ~ £ 4%
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Mississippi River at Baton Rouge (USGS gage 07374000)
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Can we improve load estimates?

= Differences in modeled vs. sensor loads of up to 30% in the spring (sensor > model)
= QOrder of magnitude lower uncertainty in the sensor vs. model loads
= |oads below the 10" and above the 90" percentiles during this period

AMLE 10th-90th percentile (1968-2010)
— — —  AMLE average (1968-2010)
B Meas(red (2014-2013)
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o USG LOADEST data from St. Francisville, continuous data from Baton Rouge;
s http://toxics.usgs.gov/hypoxia/mississippi/flux_ests/delivery/index.html; * http://www.gulfhypoxia.net/




Can we improve load estimates?

= Differences in modeled vs. sensor loads of up to 30% in the spring (sensor > model)
= QOrder of magnitude lower uncertainty in the sensor vs. model loads
= |oads below the 10" and above the 90" percentiles during this period
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Real-Time Management

“Record nitrate levels in Raccoon, Des Moines threaten Des Moines-area tap
water” - Des Moines Register (May 10,2013)

a USGS Des Moines Water Works nitrate
USGS 05482000 Des Moines River at 2nd Avenue at Des Moines, IA removal System:

= $4 million installation (1992)
= $7,000 per day to operate
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Real-Time Management

“Record nitrate levels in Raccoon, Des Moines threaten Des Moines-area tap
water” - Des Moines Register (May 10,2013)

35 Nitrate > MCL, NRaccoon nr Jefferson

Courtesy: Jessica Garrett, USGS, IA



Diurnal Variability in Indian Creek, KS

Diel variability in nitrate concentrations was highest
immediately downstream a WWTF (College site) and
lowest at the upstream sites.
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Aquatic N Metabolism

Application of nitrate sensors to understand how rivers
transform and transport nitrogen in Ichetuknee Spring,
Florida

Upstream [NO;] constant
Integrated diel [NO,] variation = uptake (U,)
Total removal yields denitrification (U,,,) by difference

Upstream Inputs f---—----

Heterotrophic Uptake +
Denitrification

2 USGS
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Estimating Aguatic N Retention

* Refine modeled aquatic N decay terms (e.g. SPARROW)
» Help with estimating groundwater N loading?
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Drivers of N Uptake

Evidence for draw down of N (and P) to support algal production?
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Nitrate Variability in Tidal Environments

" Commonly exhibits semi-diurnal fluctuations

" NO; peaks at times of low tide and salinity
minima

"  Frequent inverse relation with salinity

suggests dominant source is primary
input(s) of freshwater
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Evaluating Ecological Condition

Daily statistics show fair to poor water quality & ecological condition at
mid-bay location
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Moving Boat Surveys

Spatial mapping to identify hot spots (sources or sinks), mixing, etc.

81°45'W

Data Sources:
ESRI ArcGIS Map Servioe,
1:0028, 2013

s T\ T,

s USGS Amanda Booth, USGS, FL



Autonomous Underwater Vehicle Surveys

160.8 cm (63.6in.)

Propeller 3t Uplooking Beam

4 | —GPS/Wireless Antenna Compass

Water Quality Sensors o
| \ A

g 1473cm(58in) T ) e —

&

\Ballast Weights

profiler
(ADCP)

Acoustic
beams

Ryan Jackson, USGS, IL Water Science Center
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The (Near) Future

If you don't know where you're going, you might
not get there.” — Yogi Berra

2 USGS
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New Protoc |s and Gwdellnes

Key to an accurate, comparable real-time data

Examples:

= National Water Quality Monitoring Council (NEMI,
Sensor Workgroup, ...)

®  USGS Techniques and Methods Reports

Matrix effects on fluorometers

USGS Techniques and Methods
Report on in situ fluorometers (to
be published in 2015) will include:
Matrix interferences
Sensor calibration and
validation

F

Environmental variability
Units




Lower Cost, Easier to Use, More Efficient

" “Plug-and-play” integration for sensors

" Remote communication through phones and tablets

" Automated QAQC and metadata with new databases

"  Partnerships with manufacturers (e.g. Nutrient Sensor Challenge)

Fault detect
@

R

0 .net—> @ (AQ off-ramp)
¢ @@ —>Nét (AQ on-ramp)

— Raw data
— Processed data
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In partnership with the Alliance for Coastal Technologies
(ACT), Challenging Nutrients is developing the Nutrient
Sensor Challenge (www.nutrients-challenge.org)

Goal: Accelerate development and commercial
availability of affordable, reliable, and accurate in situ
nutrient sensors

Incentives: Testing/verification, publicity, recognition,
market access

How you can be involved:
» Visit the website and indicate your support and/or interest.
 Email info@nutrients-challenge.org for more information
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® Surface water
® Groundwater
" Edge-of-Field

®  Get out of the stream _
Lower Fox River,

and on the landscape Wisconsin _!
where runoff is - East River -

o_IirectIy affected o) Saﬂr;g:l\;gr;ir\:er, &
field practices H - Alger Creek - |

" Reduce influence of - x
“in stream” processes = \ 2: T Mauree River,

o : - Eagle Creek -
" Inform BMPs < L oo
— X

GLRI Priority Watersheds & 4% ™ ¢
(Matt Komiskey, USGS, WI) g Uia

Tulane University's Grand Challenge "Water Innovations: Reducing Hypoxia, Restoring Our Water" will seek

technical market based solutions to combat hypoxia, a deadly deficiency of oxygen in water created by the
excessive growth of phytoplankton. http://tulane.edu/tulaneprize/waterprize/

2 USGS



Next Generation Sensors

600

From “proof-of-concept” to
“field ready”:

" | ow UV fluorometer

"  Target low UV fluorescence as unique
indicator of wastewater presence

® Indicators for the potential presence of i
pathogens and bacteria

" Algal taxa

4

Algal 35
pigments,
dyes

550

- ) . .
Sediment size . 2
" Ammonia 5 ®
Optical
= DNA
400
]
1
350 Peak T
(protein
like) o
( iﬁ- EEM (excitation-
L emission matrix
200 fluorescence
b )

: 0
pL ] 260 p] 300 320 340 360 380 400 420 440
Excitation (nm)

(Steve Corsi, USGS, WI)
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National Networks

How would we build nationally-consistent, real-time,
continuous nutrient monitoring network thats:

1. Meets monitoring needs (drinking water quality, TMDLs, edge-of-
field loads, coastal issues)

2. “Accelerates the pace of discovery” (White House Big Data
Research and Development Initiative)

3. Has some long-term “stability”

4. Improves our efficiency (from data collection to decision support)?

&

USGS
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